Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 358: 120908, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631168

RESUMO

The investigation of partial denitrification/anammox (PD/anammox) processes was conducted under autotrophic (N-S cycle) and mixotrophic (N-S-C cycle) conditions over 180 days. Key findings revealed the remarkable capability of SO42--dependent systems to produce NO2- effectively, supporting anaerobic NH4+ oxidation. Additionally, SO42- served as an additional electron acceptor in sulfate reduction ammonium oxidation (SRAO). Increasing influent SO42- concentrations notably improved ammonia utilization rates (AUR) and NH4+ and total nitrogen (TN) utilization efficiencies, peaking at 57% for SBR1 and nearly 100% for SBR2. Stoichiometric analysis showed a 7.5-fold increase in AUR (SRAO and anammox) in SBR1 following SO42- supplementation. However, the analysis for SBR2 indicated a shift towards SRAO and mixotrophic denitrification, with anammox disappearing entirely by the end of the study. Comparative assessments between SBR1 and SBR2 emphasized the impact of organic compounds (CH3COONa) on transformations within the N-S-C cycle. SBR1 performance primarily involved anammox, SRAO and other SO42- utilization pathways, with minimal S-dependent autotrophic denitrification (SDAD) involvement. In contrast, SBR2 performance encompassed SRAO, mixotrophic denitrification, and other pathways for SO42- production. The SRAO process involved two dominant genera, such as Candidatus Brocadia and PHOS-HE36.

2.
J Environ Manage ; 358: 120834, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631170

RESUMO

The organic matter (OM) and nitrogen in Fresh leachate (FL) from waste compression sites pose environmental and health risks. Even though the constructed wetland (CW) can efficiently remove these pollutants, the molecular-level transformations of dissolved OM (DOM) in FL remain uncertain. This study reports the molecular dynamics of DOM and nitrogen removal during FL treatment in CWs. Two lab-scale vertical-flow CW systems were employed: one using only sand as substrates (act as a control, CW-C) and the other employing an equal mixture of manganese ore powder and sand (experimental, CW-M). Over 488 days of operation, CW-M exhibited significantly higher removal rates for chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and dissolved organic matter (represented by dissolved organic carbon, DOC) at 98.2 ± 2.5%, 99.2 ± 1.4%, and 97.9 ± 1.9%, respectively, in contrast to CW-C (92.8 ± 6.8%, 77.1 ± 28.1%, and 74.7 ± 9.5%). The three-dimensional fluorescence excitation-emission matrix (3D-EEM) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analyses unveiled that the influent DOM was predominantly composed of readily biodegradable protein-like substances with high carbon content and low unsaturation. Throughout treatment, it led to the degradation of low O/C and high H/C compounds, resulting in the formation of DOM with higher unsaturation and aromaticity, resembling humic-like substances. CW-M showcased a distinct DOM composition, characterized by lower carbon content yet higher unsaturation and aromaticity than CW-C. The study also identified the presence of Gammaproteobacteria, reported as Mn-oxidizing bacteria with significantly higher abundance in the upper and middle layers of CW-M, facilitating manganese cycling and improving DOM removal. Key pathways contributing to DOM removal encompassed adsorption, catalytic oxidation by manganese oxides, and microbial degradation. This study offers novel insights into DOM transformation and removal from FL during CW treatment, which will facilitate better design and enhanced performance.

3.
Sci Total Environ ; 924: 171420, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38438034

RESUMO

The paper reports the results of an experimental study aimed at comparing two configurations of a full-scale wastewater treatment plant (WWTP): conventional activated sludge (CAS) and oxic-settling-anaerobic process (OSA) with intermittent aeration (IA). A comprehensive monitoring campaign was carried out to assess multiple parameters for comparing the two configurations: carbon and nutrient removal, greenhouse gas emissions, respirometric analysis, and sludge production. A holistic approach has been adopted in the study with the novelty of including the carbon footprint (CF) contribution (as direct, indirect and derivative emissions) in comparing the two configurations. Results showed that the OSA-IA configuration performed better in total chemical oxygen demand (TCOD) and ortho-phosphate (PO4-P) removal. CAS performed better for Total Suspended Solids (TSS) removal showing a worsening of settling properties for OSA-IA. The heterotrophic yield coefficient and maximum growth rate decreased, suggesting a shift to sludge reduction metabolism in the OSA-IA configuration. Autotrophic biomass showed a reduced yield coefficient and maximum growth yield due to the negative effects of the sludge holding tank in the OSA-IA configuration on nitrification. The OSA-IA configuration had higher indirect emissions (30.5 % vs 21.3 % in CAS) from additional energy consumption due to additional mixers and sludge recirculation pumps. The CF value was lower for OSA-IA than for CAS configuration (0.36 kgCO2/m3 vs 0.39 kgCO2/m3 in CAS).

4.
J Environ Manage ; 354: 120414, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38412730

RESUMO

Inadequate landfill management poses risks to the environment and human health, necessitating action. Poorly designed and operated landfills release harmful gases, contaminate water, and deplete resources. Aligning landfill management with the Sustainable Development Goals (SDGs) reveals its crucial role in achieving various targets. Urgent transformation of landfill practices is necessary to address challenges like climate change, carbon neutrality, food security, and resource recovery. The scientific community recognizes landfill management's impact on climate change, evidenced by in over 191 published articles (1998-2023). This article presents emerging solutions for sustainable landfill management, including physico-chemical, oxidation, and biological treatments. Each technology is evaluated for practical applications. The article emphasizes landfill management's global significance in pursuing carbon neutrality, prioritizing resource recovery over end-of-pipe treatments. It is important to note that minimizing water, chemical, and energy inputs in nutrient recovery is crucial for achieving carbon neutrality by 2050. Water reuse, energy recovery, and material selection during manufacturing are vital. The potential of water technologies for recovering macro-nutrients from landfill leachate is explored, considering feasibility factors. Integrated waste management approaches, such as recycling and composting, reduce waste and minimize environmental impact. It is conclusively evident that the water technologies not only facilitate the purification of leachate but also enable the recovery of valuable substances such as ammonium, heavy metals, nutrients, and salts. This recovery process holds economic benefits, while the conversion of CH4 and hydrogen into bioenergy and power generation through microbial fuel cells further enhances its potential. Future research should focus on sustainable and cost-effective treatment technologies for landfill leachate. Improving landfill management can mitigate the adverse environmental and health effects of inadequate waste disposal.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Poluentes Químicos da Água , Humanos , Poluentes Químicos da Água/química , Carbono , Instalações de Eliminação de Resíduos , Água , Resíduos Sólidos
5.
Sci Total Environ ; 917: 170477, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38296099

RESUMO

The combined anammox/mixotrophic denitrification process was conducted in two granular sequencing batch reactors (SBRs) during a 200-day operation. Both reactors were fed with synthetic medium, but SBR2 was enriched with additional sulfate (SO42-) which influenced sulfate reduction ammonium oxidation (SRAO) and heterotrophic reduction of SO42- by sulfate reducing bacteria. It was hypothesized that the addition of SO42- could positively impact the removal rates of N-S-C compounds. A low C/N ratio (0.4-1.6) was maintained to prevent inhibition of anaerobic ammonium oxidizing bacteria (AnAOB), and alternating chemical oxygen demand (COD) on/off conditions were used to regenerate AnAOB during COD-off phases and heterotrophic denitrifiers during COD-on phases. Stoichiometric analysis showed that introducing SO42- in SBR2 enhanced the ammonium utilization rate, which was approximately 10 % higher compared to SBR1 in the final stage of the experiment (25.8 vs. 22.8 mg N/(g VSS·h)). The total nitrogen removal efficiencies ranged from 62 % to 99 % in both reactors, with SBR2 consistently exhibiting approximately 4 % higher efficiency than SBR1. In SBR2, the maximum overall SO42- utilization efficiency reached 27 % under COD-off conditions, while overall COD utilization was almost complete under COD-on conditions. A strong correlation (R2 = 0.98) was observed between SO42- production and COD utilization. The key players responsible for N and S transformations in response to SO42- addition were Candidatus Brocadia and Chloroflexi - Anaerolineae. This study highlights the potential to enhance the overall efficiency of N-S-C removal by implementing an integrated anammox/mixotrophic denitrification process. The combination of cycles emerges as a sustainable approach for treating wastewater rich in N-S-C compounds.


Assuntos
Compostos de Amônio , Desnitrificação , Oxidação Anaeróbia da Amônia , Nitrogênio/análise , Sulfatos , Oxirredução , Enxofre , Reatores Biológicos/microbiologia , Esgotos/microbiologia
6.
Environ Res ; 238(Pt 1): 117164, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722579

RESUMO

Arsenic (As) contamination poses a significant threat to human health, ecosystems, and agriculture, with levels ranging from 12 to 75% attributed to mine waste and stream sediments. This naturally element is abundant in Earth's crust and gets released into the environment through mining and rock processing, causing ≈363 million people to depend on As-contaminated groundwater. To combat this issue, introducing a sustainable hydrochar system has achieved a remarkable removal efficiency of over 92% for arsenic through adsorption. This comprehensive review presents an overview of As contamination in the environment, with a specific focus on its impact on drinking water and wastewater. It delves into the far-reaching effects of As on human health, ecosystems, aquatic systems, and agriculture, while also exploring the effectiveness of existing As treatment systems. Additionally, the study examines the potential of hydrochar as an efficient adsorbent for As removal from water/wastewater, along with other relevant adsorbents and biomass-based preparations of hydrochar. Notably, the fusion of hydrochar with nanoparticle-centric approaches presents a highly promising and environmentally friendly solution for achieving the removal of As from wastewater, exceeding >99% efficiency. This innovative approach holds immense potential for advancing the realms of green chemistry and environmental restoration. Various challenges associated with As contamination and treatment are highlighted, and proposed solutions are discussed. The review emphasizes the urgent need to advance treatment technologies, improve monitoring methods, and enhance regulatory frameworks. Looking outlook, the article underscores the importance of fostering research efforts, raising public awareness, and fostering interdisciplinary collaboration to address this critical environmental issue. Such efforts are vital for UN Sustainable Development Goals, especially clean water and sanitation (Goal 6) and climate action (Goal 13), crucial for global sustainability.


Assuntos
Arsênio , Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Purificação da Água , Humanos , Águas Residuárias , Arsênio/análise , Ecossistema , Água , Poluentes Químicos da Água/análise , Adsorção , Purificação da Água/métodos
7.
Water Res ; 244: 120504, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37634455

RESUMO

Anaerobic digestion (AD) is a promising method for the recovery of resources and energy from organic wastes. Correspondingly, AD modelling has also been developed in recent years. The International Water Association (IWA) Anaerobic Digestion Model No. 1 (ADM1) is currently the most commonly used structured AD model. However, as substrates become more complex and our understanding of the AD mechanism grows, both systematic and specific modifications have been applied to the ADM1. Modified models have provided a diverse range of application besides AD processes, such as fermentation and biogas upgrading processes. This paper reviews research on the modification of the ADM1, with a particular focus on processes, kinetics, stoichiometry and parameters, which are the major elements of the model. The paper begins with a brief introduction to the ADM1, followed by a summary of modifications, including extensions to the model structure, modifications to kinetics (including inhibition functions) and stoichiometry, as well as simplifications to the model. The paper also covers kinetic parameter estimation and validation of the model, as well as practical applications of the model to a variety of scenarios. The review highlights the need for improvements in simulating AD and biogas upgrading processes, as well as the lack of full-scale applications to other substrates besides sludge (such as food waste and agricultural waste). Future research directions are suggested for model development based on detailed understanding of the anaerobic treatment mechanisms, and the need to recover of valuable products.


Assuntos
Biocombustíveis , Eliminação de Resíduos , Anaerobiose , Alimentos , Fermentação , Reatores Biológicos , Modelos Teóricos
8.
Environ Res ; 236(Pt 1): 116711, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37487927

RESUMO

Sustainable water recycling and wastewater reuse are urgent nowadays considering water scarcity and increased water consumption through human activities. In 2015, United Nations Sustainable Development Goal 6 (UN SDG6) highlighted the necessity of recycling wastewater to guarantee water availability for individuals. Currently, wastewater irrigation (WWI) of crops and agricultural land appears essential. The present work overviews the quality of treated wastewater in terms of soil microbial activities, and discusses challenges and benefits of WWI in line with wastewater reuse in agriculture and aquaculture irrigation. Combined conventional-advanced wastewater treatment processes are specifically deliberated, considering the harmful impacts on human health arising from WWI originating from reuse of contaminated water (salts, organic pollutants, toxic metals, and microbial pathogens i.e., viruses and bacteria). The comprehensive literature survey revealed that, in addition to the increased levels of pathogen and microbial threats to human wellbeing, poorly-treated wastewater results in plant and soil contamination with toxic organic/inorganic chemicals, and microbial pathogens. The impact of long-term emerging pollutants like plastic nanoparticles should also be established in further studies, with the development of standardized analytical techniques for such hazardous chemicals. Likewise, the reliable, long-term and extensive judgment on heavy metals threat to human beings's health should be explored in future investigations.


Assuntos
Poluentes Ambientais , Águas Residuárias , Humanos , Irrigação Agrícola/métodos , Agricultura , Solo , Água
9.
Water Res ; 242: 120275, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37413746

RESUMO

A mathematical correlation between biomass kinetic and membrane fouling can improve the understanding and spread of Membrane Bioreactor (MBR) technology, especially in solving the membrane fouling issues. On this behalf, this paper, produced by the International Water Association (IWA) Task Group on Membrane modelling and control, reviews the current state-of-the-art regarding the modelling of kinetic processes of biomass, focusing on modelling production and utilization of soluble microbial products (SMP) and extracellular polymeric substances (EPS). The key findings of this work show that the new conceptual approaches focus on the role of different bacterial groups in the formation and degradation of SMP/EPS. Even though several studies have been published regarding SMP modelling, there still needs to be more information due to the highly complicated SMP nature to facilitate the accurate modelling of membrane fouling. The EPS group has seldom been addressed in the literature, probably due to the knowledge deficiency concerning the triggers for production and degradation pathways in MBR systems, which require further efforts. Finally, the successful model applications showed that proper estimation of SMP and EPS by modelling approaches could optimise membrane fouling, which can influence the MBR energy consumption, operating costs, and greenhouse gas emissions.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Membranas Artificiais , Reatores Biológicos/microbiologia , Bactérias , Biomassa , Esgotos/microbiologia
10.
Bioresour Technol ; 383: 129264, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37271463

RESUMO

The Anammox and Sulfate Reduction Ammonium Oxidation processes were compared in two granular sequencing batch reactors operated for 160 days under anammox conditions. It was hypothesized that increasing the concentration of SO42- may positively influence the rate of N removal under anaerobic conditions and it was tested whether SO42- reduction and anammox occur independently or are related to each other. The cooperation of N-S cycles by increasing the concentration of influent SO42- to 952 mg S/L in the second reactor, a higher ammonium utilization rate and sulfate utilization rate was achieved compared to the first reactor, i.e., 2.1-fold and 15-fold, respectively. Nitrosomonas played the dominant role in the N metabolism, while Thauera - in the S metabolism. This study highlights the benefits of linking the N-S cycles as an effective approach for the treatment of NH4+ and SO42- - rich wastewater, including lower substrate removal cost and reduced energy consumption.


Assuntos
Compostos de Amônio , Esgotos , Desnitrificação , Nitrogênio/metabolismo , Oxidação Anaeróbia da Amônia , Sulfatos , Anaerobiose , Oxirredução , Reatores Biológicos
11.
Bioresour Technol ; 381: 129168, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37182680

RESUMO

Anammox is a widely adopted process for energy-efficient removal of nitrogen from wastewater, but challenges with NOB suppression and NO3- accumulation have led to a deeper investigation of this process. To address these issues, the synergy of partial denitrification and anammox (PD-anammox) has emerged as a promising solution for sustainable nitrogen removal in wastewater. This paper presents a comprehensive review of recent developments in the PD-anammox system, including stable performance outcomes, operational parameters, and mathematical models. The review categorizes start-up and recovery strategies for PD-anammox and examines its contributions to sustainable development goals, such as reducing N2O emissions and saving energy. Furthermore, it suggests future trends and perspectives for improving the efficiency and integration of PD-anammox into full-scale wastewater treatment system. Overall, this review provides valuable insights into optimizing PD-anammox in wastewater treatment, highlighting the potential of simultaneous processes and the importance of improving efficiency and integration into full-scale systems.


Assuntos
Desnitrificação , Águas Residuárias , Esgotos , Nitrogênio , Oxidação Anaeróbia da Amônia , Reatores Biológicos , Oxirredução
12.
Sci Total Environ ; 868: 161633, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36669661

RESUMO

Anammox-mediated systems have attracted considerable attention as alternative cost-effective technologies for sustainable nitrogen (N) removal from wastewater. This review comprehensively highlights the importance of understanding microbial metabolism in anammox-mediated systems under crucial operation parameters, indicating the potentially wide applications for the sustainable treatment of N-containing wastewater. The partial nitrification-anammox (PN-A), simultaneous PN-A and denitrification (SNAD) processes have demonstrated sustainable N removal from sidestream wastewater. The partial denitrification-anammox (PD-A) and denitrifying anaerobic methane oxidation-anammox (DAMO-A) processes have advanced sustainable N removal efficiency in mainstream wastewater treatment. Moreover, N2O production/emission hotspots are extensively discussed in anammox-based processes and are related to the dominant ammonia-oxidizing bacteria (AOB) and denitrifying heterotrophs. In contrast, N2O is not produced in the metabolism pathways of AnAOB and DAMO-archaea; Moreover, the actual contribution of N2O production by dissimilatory nitrate reduction to ammonium (DNRA) and DAMO-bacteria in their species remains uncertain. Thus, PD-A and DAMO-A processes would achieve reduction in greenhouse gas production, as well as energy consumption for the reliability of N removal efficiencies. In addition to reaction mechanisms, this review covers the mathematical models for simultaneous anammox, partial nitrification and/or denitrification (i.e., PN-A, PD-A, and SNAD). Promising NO3- reduction technologies by endogenous PD, sulfur-driven autotrophic denitrification, and DNRA by anammox are also discussed. In summary, this review provides a better understanding of sustainable N removal in anammox-mediated systems, thereby encouraging future investigation and exploration of the sustainable N bio-treatment from wastewater.


Assuntos
Compostos de Amônio , Águas Residuárias , Desnitrificação , Nitrogênio/metabolismo , Oxidação Anaeróbia da Amônia , Reprodutibilidade dos Testes , Reatores Biológicos/microbiologia , Nitratos/metabolismo , Oxirredução , Anaerobiose , Compostos de Amônio/metabolismo , Modelos Teóricos , Redes e Vias Metabólicas , Esgotos
13.
Sci Total Environ ; 856(Pt 2): 159283, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36208738

RESUMO

Global food security, which has emerged as one of the sustainability challenges, impacts every country. As food cannot be generated without involving nutrients, research has intensified recently to recover unused nutrients from waste streams. As a finite resource, phosphorus (P) is largely wasted. This work critically reviews the technical applicability of various water technologies to recover macro-nutrients such as P, N, and K from wastewater. Struvite precipitation, adsorption, ion exchange, and membrane filtration are applied for nutrient recovery. Technological strengths and drawbacks in their applications are evaluated and compared. Their operational conditions such as pH, dose required, initial nutrient concentration, and treatment performance are presented. Cost-effectiveness of the technologies for P or N recovery is also elaborated. It is evident from a literature survey of 310 published studies (1985-2022) that no single technique can effectively and universally recover target macro-nutrients from liquid waste. Struvite precipitation is commonly used to recover over 95 % of P from sludge digestate with its concentration ranging from 200 to 4000 mg/L. The recovered precipitate can be reused as a fertilizer due to its high content of P and N. Phosphate removal of higher than 80 % can be achieved by struvite precipitation when the molar ratio of Mg2+/PO43- ranges between 1.1 and 1.3. The applications of artificial intelligence (AI) to collect data on critical parameters control optimization, improve treatment effectiveness, and facilitate water utilities to upscale water treatment plants. Such infrastructure in the plants could enable the recovered materials to be reused to sustain food security. As nutrient recovery is crucial in wastewater treatment, water treatment plant operators need to consider (1) the costs of nutrient recovery techniques; (2) their applicability; (3) their benefits and implications. It is essential to note that the treatment cost of P and/or N-laden wastewater depends on the process applied and local conditions.


Assuntos
Fertilizantes , Águas Residuárias , Estruvita/química , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Inteligência Artificial , Fósforo/análise , Fosfatos/química , Nutrientes , Minerais , Segurança Alimentar
14.
J Environ Sci (China) ; 124: 146-155, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182125

RESUMO

In this study, the effects of soluble readily biodegradable COD (sCOD) and particulate slowly biodegradable COD (pCOD) on anammox process were investigated. The results of the long-term experiment indicated that a low sCOD/N ratio of 0.5 could accelerate the anammox and denitrification activity, to reach as high as 84.9%±2.8% TN removal efficiency. Partial denitrification-anammox (PDN/anammox) and denitrification were proposed as the major pathways for nitrogen removal, accounting for 91.3% and 8.7% of the TN removal, respectively. Anammox bacteria could remain active with high abundance of anammox genes to maintain its dominance. Candidatus Kuenenia and Thauera were the predominant genera in the presence of organic matter. Compared with sCOD, batch experiments showed that the introduction of pCOD had a negative effect on nitrogen removal. The contribution of denitrification to nitrogen removal decreased from approximately 14% to 3% with increasing percentage of pCOD. In addition, the analysis result of the process data using an optimized ASM1 model indicated that high percentage of pCOD resulted in serious N2O emission (the peak value up to 0.25 mg N/L), which was likely due to limited mass diffusion and insufficient available carbon sources for denitrification. However, a high sCOD/N ratio was beneficial for alleviating N2O accumulation.


Assuntos
Desnitrificação , Microbiota , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Carbono , Nitrogênio , Oxirredução , Material Particulado , Esgotos/microbiologia , Águas Residuárias
15.
Sci Total Environ ; 864: 161084, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36565884

RESUMO

The second step of nitrification can be mediated by nitrite oxidizing bacteria (NOB), i.e. Nitrospira and Nitrobacter, with different characteristics in terms of the r/K theory. In this study, an activated sludge model was developed to account for competition between two groups of canonical NOB and comammox bacteria. Heterotrophic denitrification on soluble microbial products was also incorporated into the model. Four 5-week washout trials were carried out at dissolved oxygen-limited conditions for different temperatures (12 °C vs. 20 °C) and main substrates (NH4+-N vs. NO2--N). Due to the aggressive reduction of solids retention time (from 4 to 1 d), the biomass concentrations were continuously decreased and stabilized after two weeks at a level below 400 mg/L. The collected experimental data (N species, biomass concentrations, and microbiological analyses) were used for model calibration and validation. In addition to the standard predictions (N species and biomass), the newly developed model also accurately predicted two microbiological indicators, including the relative abundance of comammox bacteria as well as nitrifiers to heterotrophs ratio. Sankey diagrams revealed that the relative contributions of specific microbial groups to N conversion pathways were significantly shifted during the trial. The contribution of comammox did not exceed 5 % in the experiments with both NH4+-N and NO2--N substrates. This study contributes to a better understanding of the novel autotrophic N removal processes (e.g. deammonification) with nitrite as a central intermediate product.


Assuntos
Nitritos , Esgotos , Nitritos/metabolismo , Amônia/metabolismo , Dióxido de Nitrogênio/metabolismo , Oxirredução , Bactérias/metabolismo , Nitrificação , Reatores Biológicos
16.
Environ Res ; 215(Pt 3): 114432, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36167115

RESUMO

The various forms of nitrogen (N), including ammonium (NH4+), nitrite (NO2-), and nitrate (NO3-), present in wastewaters can create critical biotic stress and can lead to hazardous phenomena that cause imbalances in biological diversity. Thus, biological nitrogen removal (BNR) from wastewaters is considered to be imperatively urgent. Therefore, anammox-based systems, i.e. partial nitrification and anaerobic ammonium oxidation (PN/anammox) and partial denitrification and anammox (PD/anammox) have been universally acknowledged to consider as alternatives, promising and cost-effective technologies for sustainable N removal from wastewaters compared to nitrification-denitrification processes. This review comprehensively presents and discusses the latest advances in BNR technologies, including traditional nitrification-denitrification and anammox-based systems. To a deep understanding of a better-controlled combining anammox with traditional processes, the microbial community diversity and metabolism, as well as, biomass morphological characteristics were clearly reviewed in the anammox-based systems. Explaining simultaneous microbial competition and control of crucial operation parameters in single-stage anammox-based processes in terms of optimization and economic benefits makes this contribution a different vision from available review papers. The most important sustainability indicators, including global warming potential (GWP), carbon footprint (CF) and energy behaviours were explored to evaluate the sustainability of BNR processes in wastewater treatment. Additionally, the challenges and solutions for BNR processes are extensively discussed. In summary, this review helps facilitate a critical understanding of N removal technologies. It is confirmed that sustainability and saving energy would be achieved by anammox-based systems, thereby could be encouraged future outcomes for a sustainable N removal economy.


Assuntos
Compostos de Amônio , Purificação da Água , Oxidação Anaeróbia da Amônia , Reatores Biológicos , Desnitrificação , Nitratos , Nitritos , Nitrogênio/metabolismo , Dióxido de Nitrogênio , Oxirredução , Esgotos , Águas Residuárias
17.
J Environ Manage ; 323: 116040, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36099865

RESUMO

Activated sludge models are widely used to simulate, optimize and control performance of wastewater treatment plants (WWTP). For simulation of nutrient removal and energy consumption, kinetic parameters would need to be estimated, which requires an extensive measurement campaign. In this study, a novel methodology is proposed for modeling the performance and energy consumption of a biological nutrient removal activated sludge system under sensitivity and uncertainty. The actual data from the wastewater treatment plant in Slupsk (northern Poland) were used for the analysis. Global sensitivity analysis methods accounting for interactions between kinetic parameters were compared with the local sensitivity approach. An extensive procedure for estimation of kinetic parameters allowed to reduce the computational effort in the uncertainty analysis and improve the reliability of the computational results. Due to high costs of measurement campaigns for model calibration, a modification of the Generalized Likelihood Uncertainty method was applied considering the location of measurement points. The inclusion of nutrient measurements in the aerobic compartment in the uncertainty analysis resulted in percentages of ammonium, nitrate, ortho-phosphate measurements of 81%, 90%, 78%, respectively, in the 95% confidence interval. The additional inclusion of measurements in the anaerobic compartment resulted in an increase in the percentage of ortho-phosphate measurements in the aerobic compartment by 5% in the confidence interval. The developed procedure reduces computational and measurement efforts, while maintaining a high compatibility of the observed data and model predictions. This enables to implement activated sludge models also for the facilities with a limited availability of data.


Assuntos
Compostos de Amônio , Esgotos , Reatores Biológicos , Nitratos , Nutrientes , Fosfatos , Reprodutibilidade dos Testes , Incerteza , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
18.
J Environ Manage ; 323: 116146, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36099869

RESUMO

Various derivatives of Hermia models (complete pore blocking, intermediate pore blocking, cake layer formation, and standard pore blocking) and different assessments of foulant characteristics have long been used to determine the membrane fouling mechanisms. Accordingly, this study aims to adapt Hermia models and their combination according to the operating conditions of an anoxic-aerobic sequencing batch membrane bioreactor (A/O-SBMBR). In addition, fouling mechanisms of the A/O-SBMBR were assessed using these models along with the main foulant characteristics. Models fitting with the transmembrane pressure (TMP) data indicated that the intermediate-standard model was accounting for the increased fouling during the whole regular operating period, with the residual sum of squares (RSS) of 58.3. A more detailed study on the distinct stages of TMP curve showed that the intermediate-standard model had the best fit in stages of 2 and 3, with the RSS equal to 2.6 and 2.8, respectively. Also, the complete-standard model provided the best description of the fouling mechanism in stage 4, with the RSS of 12.5. Different analyzes revealed how the main foulant characteristics affect the occurrence of intermediate, complete and standard fouling mechanisms in the A/O-SBMBR, which is consistent with the fitting results of the adapted Hermia models. The modeling and experimental methods used in the presented study provided a valuable basis to prevent and control membrane fouling in membrane bioreactors.


Assuntos
Reatores Biológicos , Membranas Artificiais , Esgotos
19.
Sci Total Environ ; 848: 157628, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35905967

RESUMO

In this study, the conventional two-step nitrification model was extended with complete ammonia oxidation (comammox) and heterotrophic denitrification on soluble microbial products. The data for model calibration/validation were collected at four long-term washout experiments when the solid retention time (SRT) and hydraulic retention time (HRT) were progressively reduced from 4 d to 1 d, with mixed liquor suspended solids (MLSS) of approximately 2000 mg/L at the start of each trial. A new calibration protocol was proposed by including a systematic calculation of the initial biomass concentrations and microbial relationships as the calibration targets. Moreover, the impact assessment of initial biomass concentrations (X) and maximum growth rates (µ) for ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), comammox Nitrospira, and heterotrophs on the calibration accuracy were investigated using the response surface methodology (RSM). The RSM results revealed the strongest interaction of XAOB and µAOB on the model calibration accuracy. All the examined model efficiency measures confirmed that the extended model was accurately calibrated and validated. The estimated µ values were as follows: µAOB = 0.38 ± 0.005 d-1, µNOB = 0.20 ± 0.01 d-1, µCMX = 0.20 ± 0.01 d-1, µHET = 1.0 ± 0.03 d-1. For comparison, when using the conventional model, µAOB and µNOB increased respectively by 26 and 15 % (µAOB = 0.48 ± 0.02 d-1 and µNOB = 0.23 ± 0.005 d-1). This study provides better understanding of the effects of the initial biomass composition and the accompanying processes (comammox and heterotrophic denitrification) on modeling two-step nitrification.


Assuntos
Betaproteobacteria , Nitrificação , Amônia , Bactérias , Biomassa , Nitritos , Esgotos
20.
Environ Res ; 214(Pt 1): 113753, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35772505

RESUMO

Due to the key role of nitrite in novel nitrogen removal systems, nitrite oxidizing bacteria (NOB) have been receiving increasing attention. In this study, the coexistence and interactions of nitrifying bacteria were explored at decreasing solids retention times (SRTs). Four 5-week washout experiments were carried out in laboratory-scale (V = 10 L) sequencing batch reactors (SBRs) with mixed liquor from two full-scale activated sludge systems (continuous flow vs SBR). During the experiments, the SRT was gradually reduced from the initial value of 4.0 d to approximately 1.0 d. The reactors were operated under limited dissolved oxygen conditions (set point of 0.6 mg O2/L) and two process temperatures: 12 °C (winter) and 20 °C (summer). At both temperatures, the progressive SRT reduction was inefficient for the out-selection of both canonical NOB and comammox Nitrospira. However, the dominant NOB switched from Nitrospira to Ca. Nitrotoga, whereas the dominant AOB was always Nitrosomonas. The results of this study are important for optimizing NOB suppression strategies in the novel N removal processes, which are based on nitrite accumulation.


Assuntos
Nitritos , Esgotos , Amônia , Bactérias , Reatores Biológicos , Nitrogênio , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...